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ABSTRACT

This is Part II of a two-part paper which continues the unification of sto-
chastic comparisons. Many commonly used multivariate densities are shown to be
G-ordered and, in fact, each such density may be used as the kernel function in the
integral transform for the preservation of G-monotonicity. We show that any ellip-
tically-contoured density is G-ordered. We present an application of G-ordered
functions to certain well-known tests of a multivariate hypothesis. Sufficient con-
ditions on the distribution of the observations are determined so that the tests have

G-monotone increasing power functions.
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1. Introduction and Summary.

This is Part 1II of a two-part paper which generalizes a rearrangement ordering,
develops the theory of functions isotonic with respect to the more general ordering,
gnd presents applications in statistics. 1In Part T we defined reflection ordering
k;‘genetalization of transposition ordering) and G-ordered functions (a generalization
of functions decreasing in transposition (DT)). (See Hollander, Proschan, and
Sethuraman (1977) for definitions of transposition ordering and DT functions.) 1In
Part II we present applications of G-ordered functions in statistics.

In Section 2 we show that many well-known multivariate densities have the G-
ordered property for G, the permutation group. In fact, each density may be used
as the kernel K for the preservation of G-monotonicity under the integral transform

f K(A,x) £(x) du(x).
We show that the class of densities proportional to exp -& 1§1 Ix -2
where «,0 > 0, has the G-ordered property for G, the group of sign changes and per-
mutations. Finally we determine the reflection group G for which any elliptically-
contoured density has the G-ordered property.

In Section 3 we apply the theory of G-ordered functions to a class of hypothesis
testing problems. For a given testing problem we determine sufficient conditions on
the model such that the power functions of a well-defined class of tests have a G-

monotone or a G-ordered property. We apply our results to both parametric and non-

parametric models, each of which contains a wide variety of linear models as well.
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2. G-ordered Densities in Statistics. ‘ " : ﬂ‘ a' "

In the first pari of this section we show that each of a number of veli-known
densities may be used as the kernel function of the integral transform for the pre-
servation of G-monotonicity. We make use of the main theorem for the preservation
of G-monotone functions and its corollaries (Theorem 4.15, Corollaries 4.17, 4.18,
4.19, 4,20, and 4.21 of Part I). In the second part of this section we discuss
elliptically-contoured functions. These functions possess the G-ordered property
for some reflection group. Notable examples of elliptically-contoured densities are
the multivariate normal, the multivariate T, and the multivariate Cauchy.

Throughout this section and the section to follow, let K

be the class of
G,u

all kernels K on RZn which preserve G-monotonicity under the following integral

transform with respect to the measure u:

h()) = [ K(A,x) £(x) du(x).

Let Rn+ and Zn+ denote the set of points in Fuclidean n-space whose coordinates

are nonnegative real numbers and nonnegative integers respectively.

h

Theorem 2.1. Let K, defined on A, x X,, 1 =1,2,...,7, be the 1*" density

1’
listed in 1-7 below. Let G be the permutation group acting on R® and let ']

be the counting measure on Xi. Then K for 1 = 1,2,.04375

g € KG,u

(1). Multinomial.
x

“xii o+
Kl(x,x) =N! T —=— . The set Al = R and the set
1=1 *4°

n
X1 = {xeR": x, = 0,1,...,n, {=1,2,...,n, and ) x, = N}.
i=1




(2) .

KA(A

{x €

(5).

KS(A

s

(6).

n
T(N + & x
” 121 54 2 121xi noayt n+
K,(A,x) = 1155 - Z A I —5 . Theset A, =R and the
2 T(N) i x, ! 2
i=1 i=1 b
set X, = Zn+.
| 8
(3). Multivariate Poisson.
min L xi-j
g 1<i<sn _§ n A
K3(A,x) -e & F T ? An) ) 3T I (%:377 The set A, R™  and the
i=1 . [ et
gset X6 = Zn+.
(4). Multivariate Hypergeometric.

A
n |71 1o =
»X) = 1 i=1 . The set A4 = R and the set X4 = XA =
i=1 x:l / N

Rl @Ol 1=1,2,...,0, and Z X, =N < ): A b
i=1 i=1
Negative Multivariate Hypergeometric.
I )
[ s n T(A, + x.)
s X) = 171 L 1 The set A, = R™" and the set
n n 1=1 P(Ai) 5
mox,! r(u+ I *1]
i=1 i=1

R (A,

and the set X6 - 2™, ;
—— _ O —————— T — ] '

Negative Nultinomial.

{x € R® : X, = 0,1,...,N, 1 = 1,2,...,n, and 2 X, =
i=1

Dirichlet Compound Negative Multinomial.

N + x ] [0 + A ] (N + 98)
[ 121 121 n I‘(Ai + xi)
r(xi) .

x) = The set A

1=1 B
nox,! r(u)r(e)rm+e+{ Oy + %))
i=] i=1




P

(7). Dirichlet Compound Multinomial. ; " ’

n
L
% rli-Z-l Ai] LB T o+ '
, ; . The set A, = R and the set
. n q=1 P(Xi) 7
riN+ T A,

K7(A,X) -

i=1
" n
X7 = {xeR : x = 0,1,...,n, 1 =1,2,...,n, and Z X = N}.
i=1

Proof. Note that u, the counting measure, is translation invariant and is
also G-invariant when G 1s the permutation group acting on R". For 1= s [N O

Ai and Xi are G-invariant subsets of R".

(1). Let ¢(A,x) be the density of n independent Poisson random variables with
parameters 11’12""’An’ and note that ¢ has the generalized semigroup property

n
with respect to counting measure. Define £(x) = Z Xy and
i=]1

1
R(2(\), £(x))

, where K is the density of a univariate Poisson random

K(LQ), £(x) =

A A A
variable with parameter £(A). Define the transformation TA = [z?%y,-z?%y,...;zzﬁs)

and the function KI(TA,Tx) = ¢(A,x) K(£(2), £(x)), so that K, 4is the density of a

1
multinomial random variable with parameter TA. Clearly A g % 4if and only 1if
TA g TA. We thus conclude that Kl € KG o by Corollary 4.19 of Part I.

]

(2) Ve obtain the negative multinomial by mixing n independent Poisson random

variables according to a gamma distribution. Thus Kz has the G~ordered conditional

generalized semigroup property and consequently K2 € KG o by Corollary 4.17 of
’

Part I.




e

(3). Suppose that u,xl.xz,...,xn are independent Poisson random variables with

parameters E’AI’AZ""’An respectively. Define Y, = U + xi, i=1,2,...,n, Then

i

K3 is the joint density of YI’YZ""’Yn‘ The conditional joint density Kn(l,x)
of Yl,Yz,...,Yn has the G-ordered generalized semigroup property. Thus K3 has
the G-ordered conditional generalized semigroup property and consequently K3 € KG,u
by Corollary 4.17 of Part I.

(4). The multivariate hypergeometric distribution is the conditional distribution
of n independent binomial random variables given their sum. An argument analogous

to that which we used to show that K, € K may be used to show that K, ¢ K, .
1 G,u 4 G,u

(5). Let ¢(B,x) be the multinomial density and ¥(8,A\) be the Dirichlet density.
Then K (2,x) = J v(B,%) #(B,x) du*(x), where u* is Lebesgue measure. We establish

in Theorem 2.2 below that ¢ € KG e Thus as a consequence of Corollary 4.20 of
’

Part I we conclude that K_ e K. .
5 G,u

(6) and (7). We invoke Corollary 4.20 to conclude that K6,K7 € KG u.l'
»

Theorem 2.2. Let K, defined on A, x X, 1 = 1,2,...,5, be the 1P density

1’ i
listed in 1-5 below. Let G be the permutation group acting on R" and let u be

Lebesgue measure on Xi. Then K, € KG ¥ for 1 =1,2,...,5.

i

(1). Dirichlet.

n
i 121 *1] n 16l a Al ot
Kl(l,x) - & 1- 7 xi) nox . The set A} =R and the set
re) moroy) e e
o

n
20, 1=1,2,...,n, and 2 x, < 1}.
i=]1

X1 = {xeR": x,




(2). Inverted Dirichlet.

n n 11-1
r[e + ) Ai] L
=t 1=1 . The set Az = X2 = Rn+.

Kz(*ox)--.

n

n n o+ Z ki

P 1 T() (1 + ) xi] i=1
1=1 1i=1

(3). Multivariate Gamma.

n A,-1 n
T:ISXi 8-1 n (x, - u) 1 exp{(n - 1) u - z x,}
n 1-1 i 1-1 1
K3(A,x) - = —= du. The set
9 m ooy
i=1
nt
A3 X3 R .
(4). Multivariate F.
n Ai n Ri-l
T(Ao) n (2)1) nox,
4
n E Xi
2 0 r() [X + Ax ]i-O
1=0 i o 1=1 11
(5). Multivariate Normal.
n x 2
Ke(Ayx) = 1 exp{- 3+ § L 1. The set A, = R™ and the set X_ = R".
5 A 5 5
nf2 (2 3 =1 14
(2n) [ n XI]
i=1

Proof. Note that u, the Lebesgue measure, is translation invariant and is als

G~-invariant when G 1is the permutation group acting on Rn. For 1 =1,2,...,5, A

and X1 are G-invariant subsets of R".

o}

i

n




P, T,

Suppose xo,xl,....xﬂ are independent chi-square random variables with

n - )-1
1 xi] o ® 12000

AgsAys++es)  degrees of freedom respectively. Let Y = X [
o n ¥in 3 3 1=0

The joint density of Yl,Yz,...,Yn is a Dirichlet density. We appeal to Corollary

4.21 of Part I to conclude that K, ¢ K, .
1 G,u

(2). Suppose xo,xl,...,xn are as in (1) above. The joint density of Yj = lexo,

j=12...,n, i8 an inverted Dirichlet distribution. The conditional distribution

Ku(x,x) of Yl,Yz,...,Yn given Xo = u has the G-ordered generalized semigroup
property with respect to Lebesgue measure. Consequently, K2 has the G-ordered con-

litional generalized semigroup property and thus by Corollary 4.17 of Part I,

K, € Kc,u'

(3) Suppose X ,X,,...,X are independent gamma random variables with respective
0’1 n
scale parameters Ao’ll""’xn and common shape parameter 6. The joint density of
Y.1 = xo + XJ, j=12,...,n 1is multivariate gamma and it has the G-ordered conditional

3 € KG , as a consequence of Corollary 4.17
b

generalized semigroup property, so that K
of Part I.
(4) . Suppose xb,xl,...,xn are independent chi-square random variables with re-

X,/2);
spective degrees of freedom ZAO,ZAI,...,ZAn. Let Yj = §i7§i;, j=1,2,...,n. The

joint density of Y. ,Y,,...,Y 1s the multivariate F density and it has the
1772 n

G-ordered conditional generalized semigroup property. Thus we use Corollary 4.17

of Part I to conclude that K4 € Kc,u'




Al

il

et

(5). The density Ks has the G-ordered generalized semigroup property so that ,

by Theorem 4.15 of Part I we conclude that Kg € KG u.[[
’

We note here that Hollander, Proschan, and Sethuraman (1977) have shown that
the multivariate logarithmic series and the multivariate Pareto densities are G-
ordered for the permutation group. We have been unable to determine if either of
these densities are elements of K for any translation invariant and G-invariant

G,u
measure .

Consider the class of densities of the form:

le » @,06 > 0,

n
1
K(A,x) = c - exp{- 3 121 ]xi ~ Ai

When 6 =1 and c = (Za)-n, K(2,x) 41s the joint density of n independent random
variables from the univariate Laplace or double exponential distribution. Densities

of this form are G-ordered for the group of permutations and sign changes. Stated

formally:
13 0
Theorem 2.3. Let K(A,x) = c * exp{~ -y ) lxi - Xil s where a,0 > 0 and
: i=1

xi,li € Rl, i=1,2,...,n. Let G be the group of permutations and sign changes.
Then K 18 G-ordered.

Proof. Since K 1is of the form £(x - 1), it is equivalent to show that

19 ) 0
£(x) = ¢ + exp{- ) lxil is G-monotone decreasing. Since exp{- < ) |xi|

i=1 i=1
n 8 n 3
is a decreasing function of ) Ix,|”s 1t suffices to show that g(x) = } I, |
i=]1 i=]1

is G~monotone increasing. Now g 1s a smooth G-invariant function, so that g 1is




g

G-monotone increasing if and only 1f (r°x)(r“%g) > 0 for all x e R" and all

* *

r € A,. A fundamental set of roots for G,8,, 1is the set {ri, i=1,2,...,n}

u{r1’1+1, i=1,2,...,n-1}, where ti = (0,...,0,1,0,...,0) and

ri P ©,...,0,1/v2,-1/¥2,0,...,0). It is easy to check that (r’x)(r°vg) 2 0
k]

*
for all x € R® and all r « AG. Thus f is G-monotone decreasing and as a conse-

quence of Theorem 4.10, K 1is G-ordered.ll
We now turn our attention to elliptically~contoured densities, which have the
form c¢ ¢ f(x°Bx), where B 1is positive definite. For any quadratic form,

QB(x) ags x“Bx, with B positive definite, there exists a reflection group GB

for which QB is G-monotone increasing. If f 1s a decreasing function and

K(A,x) = ¢c » f[(x - A)“B(x - A)]), then X 1is GB-ordered. Ve now present this

result formally.

Lemma 2.5. Let B be an N x N matrix. Let

P= [r{l) 148 rﬁl) E R < r{k) wiate riz)] = [P1 b g

] be a diagonalizer of
1 . . . k

B such that {rii),...,rﬁi)} is a set of orthogonal eigenvectors corresponding to
i

the eigenvalue A, and a basis for the subspace Vi, f=1,2,...,ke Let

i

where 01 is any n, x n, orthogonal matrix. Let M = PDP°, Then MB = BM.

i i




=10 =

Proof. Define

b k{
and note that DA = AD. Now MB = PDP“PAP” = PDAP® = PADP” = PAP’PDP” = BM, as
desired. | |

We now present a theorem which describes the group G for which the quadratic

form, QB(x) = x“Bx, is G-monotone increasing. Denote the group GB'

Theorem 2.6. Let Vi, i=1,2,...,k, be the subspaces of R"™ whose bases are

the sets of orthogonal left eigenvectors corresponding to the distinct eigenvalues

Al,kz,...,xk of a positive definite matrix B. Then Gy = O(Vl) x 0(v2) % ks w% X O(Vk),

where O(Vi) is the orthogonal group acting on V,6, 1 =1,2,...,k.

i’

i

n

Proof. Let the dimension of Vi be n and note that O(Vi) = PiO(R i)pi,

1 - 1,2’-0u,k.

(1). We show that for any g ¢ GB’ (gx) “B(gx) = x“Bx. Now g 1is of the

form PDP° as in Lemma 2.5, so that gB = Bg. Thus (gx)“B(gx) = x“g”Bgx = x“g gBx
= x“Bx.

(11) . We show that for vy € CG (x¥) (the convex hull of the GB-otbit of x),
B
x“Bx 2 y“By. Write x = Xy + Xp+ oo # X, and y = Y1 + Vot oo t Vs where

XYy € Vs i=1,2,...,k. That y ¢ chx) is equivalent to X, % 2y, Yy




- Fis

k k k
1=1.2,..k. Now x“BX = xPAP'x= ] x PAPx = ] Ax - x 2 FoAyy
i=]1 i=]1 i=1
N O T :
= y“By, where Ai = " . Thus we have shown that x“Bx 2 y’By whenever
- Y
i

y € C.(x).]|
GB

Application 2.7. A general class of multivariate distributions has density
function K(A,x) proportional to exp{-v-ll(x - A)“B(x - A)]vlz}, with B positive
definite and v > 1. (See Johnson and Kotz (1972) p. 298.) For a fixed B, any
density of this form is GB-otdered. Note that for v = 2, K(A,x) is the multivariate

normal density with mean )\ and variance-covariance matrix B'l.

Application 2.8. Let X be a multivariate normal random vector with mean A

and variance-covariance matrix B 1. Define Y = (/v/S)X, where S 1is a chi-square

random variable with v degrees of freedom, independent of X. The random vector

Y with multivariate T distribution is GB-ordered, as in Application 2.7. Note

that when B 1s the identity matrix and the number of degrees of freedom v 1is

one, we have the multivariate Cauchy density. In this case GB = O(R“).




3. Applications to Hypothesis Testing.

In this section we present some applications in hypothesis testing. The main
thrust of the section is the demonstration of monotone properties of power functions.

Let X be an n~dimensional random vector with density K(A,x) on A x X,

where A and X are subsets of V, a linear subspace of R". We wish to test

either of the following hypotheses.

(1). Ho : AIA = 0 versus Hl : Alx = 0. |

(2). H : AA € F versus H

, 1 AS :Aixtr.

1

Here F 1s a closed fundamental region for a group G and Al is an n x k matrix,

k £ n. The linear transformation on V defined by Ai yields a space, Aiv, whose

dimensionis at most the dimension of V. One obvious method for testing both (1) and
(2) is to transform the space of observations by means of A”° and base a test on

some function of Aix, where x 1s an observation from K(A,x). Denote the density

of Aix by ¢(AiA,Aix) and suppose that it is an element of KG g for some trans-

latZon and G-invariant measure u. Then any test of (1) based on

Ce = {ue A’X : £(u) > cu}, where f 1s G-monotone increasing, has a G-monotone

increasing power function. This is an immediate consequence of Theorem 4.15 and
its corollaries in Part I. If the density ¢ is G-ordered, then any test of (2)

based on Ce = {ue A’X : £(u) > cu}’ where f {s G-ordered with respect to F,

has a power function G-ordered with respect to F. This is an immediate consequence

of Corollary 3.15 of Part I.

Our main interest in this section lies in special cases of the hypothesis

testing problems (1) and (2) above. Suppose that A = [Al E Azl is an element of




=18 %

#
the drthogonal group acting on V and, for some reflection group G, A‘AG =
. * ° *
(4, : 0)° bz v [0 ; Azl‘AG. Under certain assumptions on K(A,x), the density of X,

the power functions of tests presented below have monotonic properties. We do not
require that the distribution of the test statistic be computed nor do we need to
cetermine if that distribution has a G-ordered property.

We now present some technical lemmas to set the stage for the main theorem
embodying the results described above. We also summarize the discussion on the de-
composition of reflection groups in Benson and Grove (1971). Many of the results

below depend upon the decomposition of a reflection group.

As a preliminary, note that for any reflection group G acting on V, the

zroup ¢ gt {A“gA : g € G}, where A € O(V), is a reflection group acting on A°V.

Lemma 3.1. Let V be a subspace of R” and suppose that A € O0(V). Then
‘oi any reflection group G, x g y 1f and only if A°x ¢ A’y.

Lemma 3.2. Let V be a subspace of R" and suppose that A € O(V). Then for

i3 P 2"
«ny reflection group G, g ZG g, if and only if A'glA ZG A’ng, where FE = A‘FG.
Now we proceed with a short discussion on the decomposition of a reflection group.

*
Lat G be a reflection group acting on V. Suppose that A 1is a set of fundamental

*
1

*

*
~cots for G and that A = A 1

* * %
and A, nonempty and A1 l_Az. Let

*
V] A2, with A 2

*

Vi be the subspace of V spanned by Ai

» 1 = 1,2, Then the restriction "r |V2 is
i

*
the identity transformation on v, for each r, € 4;; also, the restriction M_ lvl
i

*
is the identity transformation on V. for each r, € A

1 4 €8, Set G, = (g'Vl : g € G)

anl G, = {3'V2 t g € G}, so that for 1 = 1,2, G, is generated by the reflections

.‘
\
\
‘.

|
{
.|
|



TR
"rjiv:l along the roots T, e A:. Each g € G can thus be expressed as 8|V1 e 8|V2
acting on V1 0 V2. It follows then that G 1is isomorphic with G1 x (;2 acting on
V1 ) Vz.

We now present some additional lemmas whose proofs rely on the decomposition

result above.
Lemma 3.3. Let G be a reflection group acting on V and let A = [Al Azl
* L]
be an element of the orthogonal group acting on V such that A‘AG = [Al + 0] ‘A;

. a* ¢ = : # : .
v [0 A2] B;. Define G, {[A1 + 0] g[Al -+ 0] : geGl and
#

Ez = {[0 E Azl‘glo ' A2] : g€ Gl. Then G, the reflection group generated by A‘Ac

is isomorphic with G acting on AV = [A) : 0]V @ [0 A]"V.

¥ %%
® ° o * . = * . > ®
Proof. We have that A‘AG = [A1 + 0] AG v [0 Azl L and [Al .+ 0] AG
. ] ° .
lto: Azl “A;- Since for any g e G, (A, : 0] “gla, : 0] 1is the restriction of

~ dsf

g A’gA to the space [Al 0]’V and [O ; Azl‘g[O E A2] is the restriction of

E to the space [0 : Azl‘v, we conclude that G {is isomsiphic with El x 52 acting

on (A, :01°Ve[0:aAlvV.]|

Lemma 3.4. Let G, G, 51, 52, and A be as in Lemma 3.3, Define x(”

= x4 2D, 1 21,2, vhere = ¢ (4, I 01V an xS ¢ [0} 4,1V, Then the

following statements are equivalent.

¢
). x§1’ 2 sz), j=1,2.

e e ——— e e Y G e A e
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(2). x(l) § ‘(2).

(3). ax® € 2

Proof. That (2) and (3) are equivalent is a consequence of Lemma 3.1. To

show the equivalence of (1) and (2), we note that the restriction MrllA1 E 0]°v }

. . *
is the identity transformation on [Al * 0]°V for each r e [0 : Azl‘Ac. Also

the restriction Mrl[o E Azl'v is the identity transformation on (0 E Azl‘v for

(1)

s an® (2)
each r ¢ [A1 < 0] AG. Thus X,

and x) are equivalent under Ez-majorizacion

)

and x,

(2)

and x, are equivalent under El-majorization. Consequently,

G ~
xgl) 2 x§2), j = 1,2, 1f and only if x(l) ¢ x(z).||

Lemma 3.5. Let G, G Gl’ 2, and A be as in Lemma 3.3. Define

RSO 5 ~(1)

= 8 ,» where € 61 and g, € Gz, 1=1,2. Let F, be a

i

closed fundamental region for 51, 1 =1,2, and define F -<ii 0 Fé. Then the
following statements are equivalent.

~(1) zj ~(2)

). 8 8y

» 3 =1,2.
(2). E(l) 4 5(2)'
(3). (1)A gF ~(2),.

Proof. That (2) and (3) are equivalent is a consequence of Lemma 3.2. An
argument analogous to the one used in the proof of Lemma 3.4 establishes the equi-

valence of (1) and (2).]]
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Lemma 3.6. Let G, E, El’ 52, and A be as in Lemma 3.3. Let h be G-monotone : ’

increasing (decreasing) on V. Then h(x) = h(Ax) is El-monotone increasing

(decreasing) on A°V.

Proof. Suppose x,y € A“V. Define x = X, =x, and y = Y1 + Yp» where

G
- » e 1
%y,Y, € [Al + 0]’V and X53¥, € fo - AZ]‘V. Suppose x, 2 v, and X, = ¥, Then

z 8 y and consequently Ax g Ay. Thus g(x) = h(Ax) 2 h(Ay) = i(y).ll

Lemma 3.7. Let G, E, 61, 62, and A be as in Lemma 3.3. Let f be G-ordered
with respect to F on G. Then f(g) = f(AgA") 1is El-ordered with respect to

[A1 E 0]°F on G.

~ 1 2 1 2
Proof. Suppose 818, € G. Define 8 = gf ) o gi ) and g = g§ ) 6 gg ),
= [A,:0]°F
where g{i),g(i) € Gi’ i =1,2. Suppose that g{l) 12 g{Z) and that ggl) = 352)

is the identity transformation on [0 E Azl‘V. Then g, AZF g, and consequently

Ag A° 3 Ag,A°. Thus ?(gl) = £(Ag,A”) 2 £(Ag,A") = 'E(gz).ll

Results similar to the one shown in Lemma 3.7 exist for G-ordered functions on
V2 and also for functions G-ordered with respect to F on V.

Ve now present two theorems which embody our main applications in the area of
hypothesis testing. Sufficient conditions are determined under which power functions

of certain tests of multivariate hypotheses are G-monotone increasing or G-ordered

with respect to a closed fundamental region F.
* Theorem 3.8. Let G, 5. 51, 52, and A be as in Lemma 3.3. Let K(\,x), defined

on A x X, be an element of KG . and suppose that f 1is G-monotone increasing on X.
»
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Then the power function of a test of Ho 2 AiA = 0 versus H1 2 Ail # 0 based

on C. = {xe X: £(x)> ca} is G,-monotone increasing on A°A.

1

Proof. Define h(A) = [ K(),x) I, (x) du(x), so that h is G-monotone in-
f

creasing on A as a consequence of Theorem 4.15 or one of its corollaries. Then

the power function h(A) = h(A)) 1is El~monotone increasing on A“A by Lemma 3.6.]]|

Theorem 3.9. Let G, E, 51, 52, and A be as in Lemma 3.3. Let K be G-ordered

on A x X and be absolutely continuous with respect to a G-invariant measure u.
Let f be G-ordered with respect to F on X. Then the power function of a test

qf Ho : Ail € F versus H : Ail ¢ F based on Ce = {xe X: £f(x) > ca} is Gl-

ordered with respect to [A1 E 0]°F on A“A.
Proof. Define h(\) = [ K(),x) I, (x) du(x), so that h 1s G-ordered with
£

respect to F on A as a consequence of Corollary 3.14. Then the power function
ﬁ(k) = h(A\) is El-ordered with respect to [A1 f 0]°F on A“A by Lemma 3.7 and the

comment following it.||

Example 3.10. Suppose a random vector X has an elliptically-contoured density,

i.e. the density of X, K(A,x), defined on A x X, has the form c * g[(x - A\) “B(x - )],

where B 1s positive definite and g 1is a decreasing function. Let

(1) ) :

- - 2 (k) k), : :
P [rl een T HETTERE T . ] [Pl L Pk] be a diagonalizer of
1 ™
B such that {r{i),...,rn(i)} is a set of orthogonal eigenvectors corresponding to

i

the eigenvalue ey and basis for the subspace V,, i = 1,2,...,k. The density

1'

il e - o ; — '
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K(A,x) is G-ordered for the group G = otvl) x O(VZ) X e X O(Vk). Define

'ij“) =By i ... and ?1‘” =[Py i oo DB), 159 Sk, so that

* ~ . * ~ *
P‘AG - [P}l) . o]‘A; v [o: P}z)]’A;. Note that the group gsnerated by P'AG is

& = 0(PV)) x 0(B°V,) x ... x 0(2°V,), the group generated by [i'jm P 01°a; 1s

~(2)
By

is 52 - O(P'vj+1) x O(P’Vj+z) X o0 X O(P‘Vk). As a consequence of Theorem 3.8,

El = o(r‘vl) x O(P‘vz) . WA - OCP‘Vj), and the group generated by [0 5 ]’A;

the power function of any test of Ho : 5§1)‘x = 0 versus Hl 2 5;1) A =20 based on

~

Cf = {xe X: £f(x)> cu}. where £ is G-monotone increasing, is Gl-monotone increasing.

Tests of this form include tests of certain specified orthogonal contrasts.
As a specific case of Example 3.10, suppose the parameter space A 1is generated

by the rows of x3x4, the design matrix for a simple one-way analysis of variance lay-

out. Define
E lpp
B=)|plp |, -3 <p<l.
ppl
Then
/2 ke 13 172  1/Y6 1/¥3
pel-T ks WAL ER | wE e |, e BV e wa|.
0 -2//6 1//3 0 -2/v6 143

Define A = x3x43' where B ¢ Ra. Then

T8, - 812

;;1)‘A ¥ {- :
(8, + 8y - 234)//6

_ S—
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: ;(1)‘

1 2 2 0 based on

and any test of Ho g Fgl) A=0 versus H
cf = {xeX: £f(x) > c“}, where f 1s G-monotone increasing, has a El-nonotone
increasing power function. It this case 51 is O(Rz) and the test is actually

equivalent to a test of 82 = 83 - 84.

Example 3.11. For u, @15 Gy 81, 82 € Rl, define

PN

(u+u1+81

H+a
A= 1

+
H %,

+82

-l-Bl

{ U +a, * 82

2 ]

Note that parameters of this form may arise from a two-way analysis of variance

layout with no interaction. Suppose we desire to test Ho s a, = @, versus

Hl . ay * ay. Define the orthogonal matrix

= ) . o
2 12 o 1/2
1/2 : -1/¥2 o 1/2
A= [A A,] = : ,
-1/2: 0 /Y2 1/2
-1/2: 0 -VZ 1/2
e -k
so that Ail =a -a,. Let 51 be the group of sign changes acting on

4 1 2 "
V1 {xeR : xl € R© and x, x3 - xa 0} and let Gz be any reflection group

acting on V, = (x ¢ R4 :x, =0 and x,,x.,X, € RI} Define Az = A: v A: and
2 i ¢ 2°73°% 3 (d G1 G,
* *
Ac - AAE' If the observation vector X has a density K(A,x) belonging to KG w
»
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then any test of Ho ta

4,
1" 9 based on C. = {x e R" : £(x) > ca}. where f is '

G-monotone increasing, has a El-monotone increasing power function.

There are numerous examples in which Theorems 3.8 and 3.9 can be used to show

monotonicity properties for power functions of tests of multivariate hypotheses.

We may, for instance, apply both theorems to hypothesis tests involving the general

linear model of the form Y - XB + €, where ¢ 1s a random vector having density

g(x) on V. For the general linear model the parameter space A of Theorems 3.8

and 3.9 is the linear space spanned by the columns of X“ and the density of the ob- |
servgtions K(Ax) = g(x - 1), where A = X8.

Illustrations of the usefulness of Theorems 3.8 and 3.9 include a wealth of
nonparametric tests. We may consider, for example, varisbles used in testing cer-
tain multivariate hypotheses to be the signs, ranks, or signed ranks of a set of
observations. We then use Theorems 3.8 and 3.9 by allowing K(A,x) to be the f.e-
suency function of the signs, the ranks, or the signed ranks of a set of observaticns.
. a7y well-known nonparametric tests of hypotheses can be formulated to fit the
agsumpticns of Theorems 3.8 and 3.9, so that monotonicity properties for the power
ivnctions immediately ensue. These include the sign test of Fisher, the rank sum
and the signed rank tests of Vilcoxon, and the test for equal treatment effects of
Kruskal and Wallis. In each case the usual assumptions are such that the assumptions
of Theorem 3.2.8 are satisfied. The ranklike tests of Ansari and Bradley and of
Moses for determining equality of dispersion can be shaown under the usual assumptions
to have monotonic power functions using Theorem 3.8. The test for ordered alterna-
tives against a null hypothesis of equal treatment effects pvesented by Jonckheere
can bcﬁrefor-ulnted to fit the assumptions of Theorem 3.9. Consequently, the usual

assumptions of the model dictate that Jonckheere's test has a G-ordered power function.

It 1s important to note that in all these examples observaticns were assumed to be




= of '~

mutually independent. We have indicated, through Theorems 3.8 and 3.9, sufficient
conditions on the joint distribution of the observations under which power functions

are monotone. Independence of observations in most cases is not at all a necessary

assumption.
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